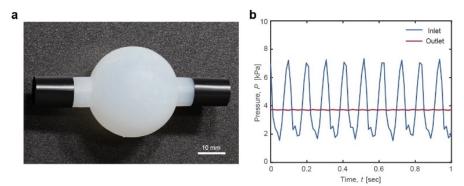
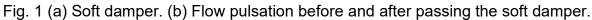
Study for regulating flow fluctuation of peristaltic pump using a spherical elastic damper.


Sanghyup Lee¹⁾, Jinwoo Lee²⁾, Anna Lee³⁾, *Keunhwan Park⁴⁾


^{1), 4)} Department of Mechanical Engineering, Gachon university, Seongnam 13120, Korea

 ^{2), 3)} Department of Mechanical Engineering, POSTECH, Pohang 37673, Korea
¹⁾ <u>mister0503@gachon.ac.kr</u>, ²⁾ <u>jinulee@postech.ac.kr</u>, ³⁾ <u>annalee@postech.ac.kr</u>, ⁴⁾ <u>kpark@gachon.ac.kr</u>

ABSTRACT

Pricking a burst prevented water balloon, the extremely uniform laminar flow can be observed. Inspired by this fluid=structure interaction, we designed a spherical elastic tube with inlet and outlet, named soft damper, to reduce flow pulsation in industrial application. We tested the soft damper using peristaltic pump and found that the soft damper can remove 99.87% of flow pulsation. We also theoretically analyze the mechanism of the soft damper. We found that each soft damper has their own pressure section can extremely remove flow pulsation. To fabricate a suitable soft damper for the required pressure, pressure and volume diagrams according to various volume, hardness, and thickness were experimentally obtained.

REFERENCES

- ²⁾ Graduate student
- ³⁾ Professor

¹⁾ Undergraduate student

⁴⁾ Professor

The 2022 World Congress on **The 2022 Structures Congress (Structures22)** 16-19, August, 2022, GECE, Seoul, Korea

Park, Keunhwan, et al. (2018), "Viscous flow in a soft valve." *Journal of Fluid Mechanics* 836. Park, Keunhwan, et al. (2021), "Fluid-structure interactions enable passive flow control in real and biomimetic plants.".